NOvA and MINOS Jarek Nowak University of Minnesota

The MINOS Collaboration

Argonne • Athens • Benedictine •
Brookhaven • Caltech • Cambridge •
Campinas

Fermilab • Harvard • IIT • Indiana •

Minnesota-Duluth • Minnesota-Twin Cities
Oxford • Pittsburgh • Rutherford • Sao
Paulo • South Carolina • Stanford
Sussex • Texas A&M • Texas-Austin •

Tufts • UCL • Warsaw • William & Mary

NOvA Collaboration

ANL / Athens / Banaras Hindu University/
Caltech / Cincinnati /Institute of Physics ASCR /
Charles University / Cochin University /
University of Delhi / FNAL / IIT Guwahati/
Harvard / University of Hyderabad/
IIT Hyderabad / Indiana / Iowa State /
University of Jammu/ Lebedev / Michigan
State/ Minnesota, Crookston / Minnesota,
Duluth / Minnesota, Twin Cities / INR Moscow /
Panjab University/ Sussex /
South Carolina SMU / Stanford / Tennessee /
Texas, Austin / Tufts / Virginia / WSU / William

MINOS

NOVA

- A long-baseline neutrino oscillation experiment
- Near Detector at Fermilab to measure the beam composition 1km from source and 0.98kton
- Far Detector deep underground in the Soudan Underground Lab, Minnesota, to search for evidence of oscillations
- functionally identical to Near detector
- 735 km from source

- Use the upgraded NuMl beam at Fermilab.
- Construct a totally active liquid scintillator detector off the main axis of the beam.
 - Far detector is 14 mrad off- axis and on the surface (14kton).
 - Near detector is also 14 mrad off-axis but underground(330ton).
 - Location reduces background.
- If neutrinos oscillate, electron neutrinos are observed at the Far Detector in Ash River, 810 km away.

NuMI beamline (Neutrinos at the Main Injector)

Cycle length is 2.2s
Typical peak NuMl beam power
~330 kW in mixed mode

Linac: 750 keV - 400 MeV

Booster: 400 MeV – 8 GeV

Main Injector: 8 GeV – 120

GeV

Slip-stack 11 booster batches

2 batches to antiproton source

9 batches to NuMI

Neutrino Production with NuMI

(Neutrinos at the Main Injector)

The Beam

- 120 GeV protons from the Main Injector
- ~330 kW beam power
- 10 µs spill of 120 GeV protons every 2.2 s
- 3.6 \times 10¹³ protons per pulse
- Neutrino spectrum changes with target position

10/22/2012

NOvA and MINOS - Jarek Nowak

Neutrino Production with NuMI

(Neutrinos at the Main Injector)

The Target and Production

- Protons strike a graphite target
 - 47 segments, $6.4 \times 15 \times 20 \text{mm}^3 \text{(MINOS)}$
 - \sim 95.4 cm long or 1.9 interaction length

Neutrino Production with NuMI

(Neutrinos at the Main Injector)

The Target and Production

- Protons strike a graphite target
 - 47 segments, $6.4 \times 15 \times 20 \text{mm}^3 \text{(MINOS)}$
 - \sim 95.4 cm long or 1.9 interaction length
- •Two magnetic focussing horns guide mesons, mostly πs + Ks, down decay pipe
 - •Pulsed horn current ~200kA
 - •3T magnetic field

Neutrino beam (FHC)

 $91.7\% v_{\mu}, 7.0\% \overline{v_{\mu}}, 1.3\% \left(v_{e} + \overline{v_{e}}\right)$

Neutrino beam (FHC)

 $91.7\% v_{\mu}, 7.0\% \overline{v_{\mu}}, 1.3\% \left(v_e + \overline{v_e}\right)$

Neomino beam (inc

Anti-neutrino beam (RHC)2

$$39.9\% \overline{v_{\mu}}, 58.1\% v_{\mu}, 2.0\% \left(v_e + \overline{v_e}\right)$$

NuMI beam upgrade for NOvA experiment

- Enhanced 700 kW NuMI beamline
- Reduce cycle time from 2.2 to 1.3 seconds.
- Turn Recycler from antiproton to proton ring injection & extraction lines, associated kickers & instrumentation, 53 MHz RF
- Increased intensity/cycle.
- New horn and target.
- 10µs beam pulse
- 4.9e13 POT/pulse or 6e20 POT/year

Target Hall Upgrades

NuMl target (top) must fit inside horn 1

- Small, mechanically weak. Recent problems – failure of water cooling lines
- NOvA target (right) upstream of horn 1 (neutrino energy from offaxis angle)
 - Much more robust design. Water cooling 8 times further away from beam than NuMl

NOVA target

Off-axis Beam

 $E_{\nu} \approx 0.43 \frac{E_{\pi}}{1 + \gamma^2 \theta_{\nu}^2}$

ND

At 14 mrad off-axis, narrow band beam peaked at 2 GeV

- Near oscillation maximum
- Few high energy NC background events

Making a Neutrino Beam@NOvA

Making a Neutrino Beam@NOvA

The MINOS Experiment

(Main Injector Neutrino Oscillation Search)

MINOS Is a two detector long-baseline Neutrino Oscillation experiment

• 735 km baseline from Fermilab to Soudan, MN.

MINOS Near Detector

- Measure beam composition
- Measure v energy spectrum
- 1km from source and 0.98kton
- 3.8 x 4.8 x 17 m³
- 100 m underground

MINOS Far Detector

- Look for evidence of oscillations by comparing spectrum to Near detector
- <u>functionally identical</u> to Near detector
- 735 km from source
- 8 x 8 x 30m³, 700 m underground, 5.4kton

The MINOS Detectors

Detectors are steel-scintillating sampling calorimeters

Having two functionally identical detectors minimizes errors due to beam and neutrino interaction uncertainties

Steel plane absorbers 2.54cm thick

- Average =1.3 Tesla (Toroidal)
- Good muon charge sign identification

Scintillating strips measure $4.1 \times 1 \text{ cm}^2$

- strip width is 1.1 Moliere radius
- have embedded wavelength shifting fibers
- alternative planes are orthogonal to allow for
- 3-D reconstruction of events.

Detector Calibration

- Light injection to monitor hardware+electronics
- Cosmic muons used to monitor scintillator response
- CERN test beam detector set absolute Energy scale

Neutrino Interactions in Detectors

transverse direction

beam direction

color scale represents energy deposition

long µ track & possible hadronic activity at vertex 10/22/2012

short with diffuse
shower
NOvA and MINOS - Jarek Nowak

short with compact EM shower profile

MINOS oscillation results (only disappearance)

Muon Neutrino Oscillation Results

No oscillation Prediction: 3564 Observed: 2894

$$\left| \Delta m^2 \right| = 2.41^{+0.11}_{-0.10} \times 10^{-3} \,\mathrm{eV}^2$$

$$\sin^2(2\theta) = 0.94^{+0.04}_{-0.05}$$

Muon Antineutrino Oscillation Results

No oscillation Prediction: 312 Observed: 226

$$|\Delta \overline{m}^2| = 2.64^{+0.28}_{-0.27} \times 10^{-3} \,\mathrm{eV}^2$$

$$\sin^2(2\bar{\theta}) > 0.78 (90\% \text{ C.L.})$$

in antineutrino mode

in neutrino mode

Antineutrinos in Neutrino Mode

No oscillation Prediction: 536

Observed: 414

$$|\Delta \bar{m}^2| = 2.60^{+0.28}_{-0.23} \times 10^{-3} \,\mathrm{eV}^2$$

 $\sin^2(2\overline{\theta}) > 0.80 (90\% \text{ C.L.})_{21}$

The NOvA detectors

- 14 kton Far Detector
 - 64 % active detector.
 - 344,064 detector cells read by APDs.
- 0.3 kton Near Detector
 - 19,104 cells (channels).
- Each plane just 0.15 X_0 . Great for e^- vs π^0 .

Far detector 14 kton 986 planes

Near detector 0.3 kton

Prototype detecor 0.2 kton

10/22/2012

NOvA and MINOS - Jarek Nowak

32-pixel APD

Both ends of a fiber to one pixel

MC Events in NOvA

Excellent granularity for a detector of this scale

 $X_0 = 38$ cm (6 cell depths, 10 cell widths)

Beneficial occupancy of Ash River laboratory on April 13, 2011

NOvA construction status

- Far Detector site construction is now complete.
 - The block pivoter is installed at the site.
 - Installation has started.
- Upgrade NuMI beam from
 - 350 kW to 700kW initiated May 1, 2012.
- Near Detector cavern excavation and assembly during shutdown.
 - Changed to 96 x 96 cell design to improve event containment.

NOvA construction status

- First layer of modules is permanently placed on the pivoter table at Ash River, MN - July 26, 2012
- First block installed on September 10
- Second block installed on October 3.
- 26 blocks to go
- Excavation of the Near detector cavern

10/22/2012

NOvA and MINOS - Jarek Nowak

Prototype Near Detector

"NDOS" (Near Detector on Surface)

- Component production, installation, and integration tests and adjustments
 - DAQ development
 - Calibration, simulation, reconstruction development using real data
 - Flux and cross sections

Located in two neutrino beams providing an early look at data and a chance to tune up DAQ, calibration, reconstruction, and analysis prior to first data from Ash River

It saw neutrinos from NuMl beam at an off-axis angle of 110 mrad.

NDOS is located \sim on the Booster Neutrino Beam (BNB) line, but the detector axis is rotated 23° with respect to the BNB beamline

NOvA Near Detector Prototype

- Near Detector Prototype installed on surface at Fermilab.
- 5000 neutrino events from the NuMl beam observed.
- Neutrino candidate data matches well to Monte Carlo.

- Data is useful for detector operations.
- Benchmarking calibration, reconstruction and simulations.

Near detector change from $2x3 \rightarrow 3x3$

- Event containment differences
- In the NOvA Near Detector 82-87% of neutrino events are contained. Also Up to 10% of the NC lose a π^0 .
- We do not expect these effects to be present in the Far Detector.

3x3 fiducial region with 60 cm border

- SciNOvA is an idea to build a fine-grained detector (patterned after the K2K and SciBooNE SciBar detector) and deploy it in front of the NOvA near detector to:
- Aid in the detailed understanding of NOvA background event topologies
- Measure neutrino cross sections, particularly CC QE di-nucleon correlations and NC π⁰ production

"Baseline" is SciBar from 2010 proposal 15k bars 1.3 cm x 2.5 cm x 290 cm with 1.5 mm fiber to Hamamatsu M64 PMTs using "IU IRM" readout boards arranged in 64 alternating X/Y layers:

SciNOvA

Currently not part of the NOvA project

Other options we considered

- The NOvA collaboration also considered other options but due to budget and/or technology issues we did NOT pursue them.
- Second near detector with different L/E to cover the MiniBooNE low energy range.
- 2 km option for the near detector
 - Reduce the line source effect
 - Reduce the pile-up effect
- Magnetized detector
 - Determine the wrong-sign contamination of the beam.

Project Timeline (visualization)

- Significance of mass hierarchy resolution using a sample counting experiment.
- Energy fit provides improvement on the fully
 10/de/gererate δ_{CP} values.

We will start with neutrino running:

 5σ observation of $V_{\mu} \to V_e$ in first year if normal hierarchy and then switch to anti-neutrino running as needed.

Nominal run plan 3 years in each mode at 6 x 10²⁰ POT

Beam	signal	Total Bkgd	NC bkgd	ν _μ CC bkgd	ν _e CC bkgd
neutrino	68	32	19	5	8
antineutrino	32	15	10	<1	5

- NOvA's will do a few % measurement in Δm^2_{32} and $\sin^2 2\theta_{23}$.
- Improvement of one order of magnitude in $\sin^2 2\theta_{23}$.
- It might not be maximal. NOvA and MINOS - Jarek Nowak

If $\sin^2 2\theta_{23}$ is not maximal there is an ambiguity as to whether θ_{23} is larger or smaller than 45° .

Summary

- MINOS collaboration will continue to take data after the NuMI upgrade as the MINOS+ experiment.
 - Inclusive cross section for neutrinos and antineutrinos Phys.Rev. D81 (2010) 072002
 - Charge current quasi-elastic scattering results internal review
 - Coherent π^0 production internal review

- NOvA very likely will present first cross section results from the near detector at next NuInt2014.
 - See poster by M. Betancourt (Study of Quasi-elastic interactions using the NOvA Near Detector Prototype)

BACKUP

NOVA Near Detector Prototype (NDOS)

MiniBooNE

Target Building

Target

Proton beam from Main Injector

Target Hall

- Prototype Near Detector on
 Surface (NDOS) –
- Taking data since November 2010
- Prototype of the future Near Detector

36

NDOS

NOVA Near Detector

NOvA and MINOS - Jarek Nowak

NOVA Near Detector Prototype (NDOS)

Prototype (NDOS)

- 196 Planes (3m x 4m)+ 10 Steel Planes ("Muon Catcher")
- 220 Ton
- 16000 cells
- Cosmic Ray Muon Rate:
 - \sim 4 kHz (on surface)
- In-Spill Rate:
 - 10 μs duration every 2.2 s
 - 16 neutrino events/day (NuMI + BNB)
 - Partially instrumented

Near Detector

- 196 Planes (3m x 4m)+ 10 Steel Planes ("Muon Catcher")
- 220 Ton
- 16000 cells
- Cosmic Ray Muon Rate:
 - \sim 50 Hz (105 m overburden)
- In-Spill Rate:
 - 10 μs duration every 1.33 s
 - 30 neutrino events/spill

38

Prototype detector

Main goals are:

- Test detector design and prepare for far detector production.
- Develop DAQ system on custom design hardware
- Tune calibration procedures.
- Show electron neutrino selection and $e \setminus \pi^0$ separation.
- Verify cosmic background suppression.

Prototype detector

NDOS collects data from NuMI and BNB beams

NuMI off-axis 110 mrad

- $\langle E_v \rangle \sim 2 \text{ GeV}$
- L ~ 850 m
- L/E~0.43 km/GeV

Booster (BNB) on axis but rotated wrt to the beam

- $<E_{v}> \sim 0.8 \text{ GeV}$
- L ~ 650 m
- L/E~0.8 km/GeV
- · Quasi-elastic cross section at 1 and 2 GeV.
- Study nuclear hadronization models and multinucleon production.

	РоТ	NuMI	Cosmic Bg
Neutrino	5.6e18	253	39
Antineutrino	8.4e19	1001	69

		РоТ	BNB	Cosmic Bg
0,	Antineutrino	3e19	222	92

Detector Components

Liquid scintillator (3 million gallons)

- Contained in 3.9cm x 6.6 cm cells of length 15.6 meters
- 3.9 cm as seen by the beam
- Cell walls are rigid PVC (5 kilotons)
 - Loaded with 15% anatase form of titanium dioxide
 - Diffuse reflection at walls keeps light near (within ~ 1 m) particle path
- Looped wavelength-shifting fiber collects light (11,160 km)
 - Fiber diameter 0.7 mm
 - Fiber shifts wavelength to ~ 520-550 nm along the fiber
- Avalanche photodiode (APD) converts light to electrical signal (11,160 devices, ea. 32 pixels)
 - 85% quantum efficiency

Liquid Scintillator Composition

- Liquid scintillator for NOVA is composed of a primary scintillant (pseudocumene) that gives off light at 300 nm,
- waveshifters (PPO & bis-MSB) that downshift the UV photons to longer wavelength to facilitate absorption by the wavelength shifting (WLS) fibers (convert the photons to 420 nm),
- anti-static agent (Stadis) that prevents the build-up of static electricity.
- The "fluor mix" + anti-static are dissolved in a mineral oil solvent

solvent

fluor mix

anti-static agent

component		mass fraction
mineral oil	liquid	94.90%
pseudocumene	liquid	4.99%
PPO	powder	0.110%
bis-MSB	powder	0.0015%
Stadis-425	liquid	0.0010%
Total		100.0%

WLS Fiber

Need ~ 12,000 km of 0.7 mm diameter wavelength shifting fiber from Kuraray. So far ~10% received and tested

- MSU Quality Assurance Scanner (duplicate at Kuraray factory)
 - Fiber wound on a drum in a 27 m long groove with holes on 1 m intervals
 - Fiber is NOT cut from the spool,
 - Light source illuminates fiber from within the drum
 - Total light output (photodiode) and spectrographic scans, each \sim 1 minute

K27 dye @ 300 ppm, S-type

Michigan State

APD Description

- APD is a classic linear APD manufactured by Hamamatsu operated at a gain (M) of 100
 - \$11211(X) custom variant of commercial \$8550 SiAPD
- Operating temperature is -15°C to keep shot noise at the same level as the amplifier noise
- Signal-to-noise > 10 for muon at far end of a 15m long cell

 Both ends of the fiber in each cell are read wir a single APD

32 APDs in a single

4 × 8 array to readout

one modul

10/22/2012

	Manufacturer	
	Pixel Active Area	1.95 mm × 1.0 mm
	Pixel Pitch	2.65 mm
	Array Size	32 pixels
	Die Size	15.34mm × 13.64mm
	Quantum Efficiency (>525 nm)	85%
	Pixel Capacitance	10 pF
	Bulk Dark Current (I _B) at 25 C	12.5 pA
	Bulk Dark Current (I _B) at -15 C	0.25 pA
	Peak Sensitivity	600 nm
	Operating Voltage	$375 \pm 50 \text{ volts}$
	Gain at Operating Voltage	100
	Operating Temperature (with Thermo-Electric Cooler)	-15°C
	Expected Signal-to-Noise Ratio (Muon at Far End of Cell)	10:1
	APD channels per plane	384
	APD arrays per plane	12
	Total number of planes	930
	Total Number of APD arrays	11,160
	APD pixels total	357,120

Module Architecture

ND Manifold Architecture

Raceway Functionality

Face of optical connector

- Registers fibers in optical connector
- Guarantees acceptable bend radius
- Shields fibers from events in manifold
- Facilitates assembly

Threading fibers into opt conn

Beam Data Analyzed

HE neutrinos

Antineutrinos

NOVA upgrades

- Increase NuMI primary proton beam power
 - 330 (380) kW -> 700 kV
- Additional focus on loss control
 - Double the beam power
 - Same tunnels
- Change neutrino beam energy (focussing)
 - Optimize flux at off-axis
 NOvA location

Increasing beam power

Move slip-stacking to

Increase Main Injector ramp rate (204 GeV/s -> 240

> 700kW with increase in per-

So need to rebuild recycler

- Remove:
 - Old transfer lines
 - Small aperture (pbar: $6\pi/2\pi$, protons: $15-20\pi$)
 - Stochastic cooling
 - Electron cooling
 - Pelletron
 - Rebuild MI-30 with FODO lattice
 - Various odds and ends that might be aperture restrictions

- Add:
 - New injection line from MI8 to recycler
 - New RR->MI transfer line
 - 53 MHz RF system for slipstacking
 - Instrumentation
 - BPMs
 - Low-mass Ti multiwires
 - IPMs
 - Must maintain vacuum at $10^{-10} 10^{-11}$ torr (TSPs)

New MI-8 line

- Switched dipole at 849
 - ADCW (wide-gap modification of old ADC magnet)
- Strontium Ferrite
 permanent magnet dipoles
 like rest of MI-8
- Two Samarium Cobalt dipoles (space constraints)
- Strontium Ferrite recycler quads, powered quad trims for lattice matching

Installation in MI8

- 1-week shutdown in March 2011
 - Electric
 company
 replacing
 switchgear
 offsite
- Installed first PDD magnet in new MI8

Rebuild 30 straight

53 MHz RF in Recycler

- Build 3 RF cavities
 - A, B and hot spare
 - 150 kV per cavity
 - Operating range: $52.809 \text{ MHz} \pm 1260 \text{ Hz}$
 - 10 KHz fast (~40 µs) phase shifters from Proton Driver
- Recycle PAs and modulators from Tevatron
- LLRF close to a copy of MI system

11 batches -> 12 batches

- Currently place 81
 bunches every 86 in MI
- For NOvA, place 81 bunches every 84 in Recycler. (84 = 588/7)
- Faster rising/falling edges-> many short kickers (6)
- Already have 7 RKA magnets in Ml: Gap Clearing Kicker system for loss control

Gap Clearing Kicker System

6/7 magnets will move up to recycler for NOvA 10/22/2012

GCK measurements

- Edges within specification
- Slower edge in damper measurement might be artifact

- For recycler, building "tail bumper" to cancel tail
- Tail measurement similar to electrical measurements (good)

GCK reducing local losses

Increase MI ramp rate

- 2 new MI cavities to maintain bucket area
- New transformer for vertical quad bus
- Increased heat load on cooling ponds
 - Will need more cooling for summer – study underway looking at future cooling needs (not just NOvA)
 - More ponds?
 - Run a chiller in summer?
 - Shade ponds?

Beamline upgrades

- Increase rep rate
 - 2.2s (2.0s) -> 1.33s
- Replace 5 3Q120 quads with ones from A150 beamline (better cooling)
- Upgrade magnet power supplies
 - Faster ramp
 - BULB
 - Better regulation
 - Current monitor -> beam permit

- New kicker power supply
- Beam intensity doubled, but beam loss in waterbearing rock must not double
 - New 1 mil Ti multiwires lower mass in beam